๐ Daftar Isi
Rumus Dasar
\[
\int sin x dx=-cos x +c
\]
\[
\int cos x dx= sin x +c
\]
atau dapat dilihat dari tabel turunan fungsi trigonometri berikut.
.tg-wrap{padding-bottom:20px;} .tg {border-collapse:collapse;border-spacing:0;} .tg td{border-bottom-width:1px;border-color:black;border-style:solid;border-top-width:1px;border-width:0px; font-family:Arial, sans-serif;font-size:14px;overflow:hidden;padding:10px 5px;word-break:normal;} .tg th{border-bottom-width:1px;border-color:black;border-style:solid;border-top-width:1px;border-width:0px; font-family:Arial, sans-serif;font-size:14px;font-weight:normal;overflow:hidden;padding:10px 5px;word-break:normal;} .tg .tg-0lax{text-align:center;vertical-align:top} .tg .tg-tf2e{text-align:center;vertical-align:top} .tg-tf2e .mjx-chtml {text-align: center !important}\[f(x)\] | \[f'(x)\] |
---|---|
\[\sin x\] | \[\cos x\] |
\[\cos x\] | \[-\sin x\] |
\[\tan x\] | \[\sec^{2}x\] |
\[\sec x\] | \[\tan x \sec x\] |
\[\cot x\] | \[-\csc^{2}x\] |
\[\csc x\] | \[-\cot x \csc x\] |
Pengembangan Rumus
- \(\int \sin ax dx = -\frac{1}{a} \cos ax + c\)
- \(\int \cos ax dx = \frac{1}{a} \sin ax + c\)
- \(\int \tan x dx = – \ln| \cos x| + c\)
- \(\int \cot x dx = \ln | \sin x | + c\)
- \(\int \cos (ax+b)dx=\frac{1}{a} \sin (ax+b)+c\)
- \(\int \sin (ax+b)dx=-\frac{1}{a} \cos (ax+b)+c\)
- \(\int \sec^{2}(ax+b) dx=\frac{1}{a} \tan (ax+b)+c\)
- \(\int \tan (ax+b) \sec (ax+b) dx=\frac{1}{a} \sec (ax+b)+c\)
- \(\int \csc^{2}(ax+b) dx=- \frac{1}{a} \cot (ax+b)+c\)
- \(\int \cot (ax+b) \csc (ax+b)dx=- \frac{1}{a} \csc (ax+b)+c\)
Contoh Soal
- \(\int (2sinx+3)dx\)= …
Jawab :
\[
\int (2sinx+3)dx=2\int sinx dx+\int 3dx=-2cosx+3x+c
\]
2. \(\int (sec^{2}2x-1)dx\) = …
Jawab :
\[
\int (sec^{2}2x-1)dx=\int sec^{2}2xdx-\int dx=\frac{1}{2}tan2x-x+c
\]
3. \(\int sin4xcos2xdx\) = …
Jawab :
\[\begin{aligned}
\int sin4xcos2xdx &=\int \frac{1}{2}(sin6x+sin2x)dx\\
&=\frac{1}{2}\int (sin6x+sin2x)dx\\
&=\frac{1}{2}(-\frac{1}{6}cos6x-\frac{1}{2}cos2x+c\\
&=-\frac{1}{12}cos6x-\frac{1}{4}cos2x+c
\end{aligned}\]
Materi Lengkap
Berikut adalah materi lainnya yang membahas mengenai Integral.